WNE Linear Algebra Final Exam Series B

1 February 2019

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Problem 1.

Let V = lin((1,0,1,2),(1,1,3,1),(3,-1,2,7),(0,-1,-2,1)) be a subspace of \mathbb{R}^4 .

- a) find a basis \mathcal{A} of V and the dimension of V,
- b) complete basis \mathcal{A} to a basis \mathcal{B} of \mathbb{R}^4 and find the coordinates of vector $w = (1,1,1,1) \in \mathbb{R}^4$ relative to \mathcal{B} .

Problem 2

Let $V \subset \mathbb{R}^4$ be a subspace given by the homogeneous system of linear equations

$$\begin{cases} x_1 + 2x_2 + x_3 + 2x_4 = 0 \\ 2x_1 + 5x_2 + 3x_3 + 3x_4 = 0 \end{cases}$$

- a) find a basis \mathcal{A} and the dimension of the subspace V,
- b) let $W \subset \mathbb{R}^4$ be a subspace spanned by the basis \mathcal{A} and the vector $w = (0, 1, 0, 0) \in \mathbb{R}^4$. Find a homogeneous system of linear equations which set of solutions is equal to W.

Problem 3.

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a linear endomorphism given by the formula

$$\varphi((x_1, x_2, x_3)) = (x_1, -x_1 + x_3, 3x_1 + 3x_2 + 2x_3,).$$

- a) find the eigenvalues of φ and bases of the corresponding eigenspaces,
- b) find a matrix $C \in M(3 \times 3; \mathbb{R})$ such that

$$C^{-1}M(\varphi)_{st}^{st}C = \begin{bmatrix} -1 & 0 & 0\\ 0 & a & 0\\ 0 & 0 & 1 \end{bmatrix}$$

for some $a \in \mathbb{R}$.

Problem 4.

Let $\mathcal{A}=((1,1),(1,2)),\ \mathcal{B}=((1,0),(1,-1))$ be ordered bases of \mathbb{R}^2 . Let $\varphi\colon\mathbb{R}^2\to\mathbb{R}^2$ be a linear transformations given by the matrix

$$M(\varphi)^{\mathcal{A}}_{\mathcal{B}} = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right].$$

- a) find the formula of φ ,
- b) find the matrix $M(\varphi \circ \varphi)_{\mathcal{B}}^{\mathcal{B}}$.

Problem 5.

Let

$$A_t = \begin{bmatrix} 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 3 \\ t & 1 & 3 & 2 \\ 3 & 2 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 4 & 1 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 1 & 2 & 1 & 1 \end{bmatrix}.$$

- a) for which $t \in \mathbb{R}$ is matrix A_t invertible?
- b) for t = 3 compute $\det(B^{-1}A_t)$.

Problem 6.

Let $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + x_2 - x_3 = 0\}$ be a subspace of \mathbb{R}^3 .

- a) find an orthonormal basis of V,
- b) compute the orthogonal projection of w = (4, 5, 1) onto V^{\perp} .

Problem 7.

Let $q_t \colon \mathbb{R}^3 \longrightarrow \mathbb{R}$ be a quadratic form given by the formula $q_t((x_1, x_2, x_3)) = -x_1^2 - 4x_2^2 - 12x_3^2 + 4tx_2x_3$.

- a) for which $t \in \mathbb{R}$ is the form q_t negative definite?
- b) check if q_t is either positive semidefinite or negative semidefinite for $t = \sqrt{3}$.

Problem 8.

Consider the following linear programming problem $-5x_1 - x_3 - 6x_5 \rightarrow \min$ in the standard form with constraints

$$\begin{cases} x_1 + x_2 + x_3 + \dots + 5x_5 = 3 \\ x_1 + x_2 + \dots + x_4 - x_5 = 4 \end{cases} \text{ and } x_i \geqslant 0 \text{ for } i = 1, \dots, 5$$
a) which of the sets $\mathcal{B}_1 = \{2, 3\}, \mathcal{B}_2 = \{3, 4\}$ is basic feasible? Write the correspond-

- ing feasible solution.
- b) solve the linear programming problem using simplex method.