WNE Linear Algebra Final Exam
 Series B

1 February 2019

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Problem 1.

Let $V=\operatorname{lin}((1,0,1,2),(1,1,3,1),(3,-1,2,7),(0,-1,-2,1))$ be a subspace of \mathbb{R}^{4}.
a) find a basis \mathcal{A} of V and the dimension of V,
b) complete basis \mathcal{A} to a basis \mathcal{B} of \mathbb{R}^{4} and find the coordinates of vector $w=$ $(1,1,1,1) \in \mathbb{R}^{4}$ relative to \mathcal{B}.

Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{c}
x_{1}+2 x_{2}+x_{3}+2 x_{4}=0 \\
2 x_{1}+5 x_{2}+3 x_{3}+3 x_{4}=0
\end{array}\right.
$$

a) find a basis \mathcal{A} and the dimension of the subspace V,
b) let $W \subset \mathbb{R}^{4}$ be a subspace spanned by the basis \mathcal{A} and the vector $w=(0,1,0,0) \in$ \mathbb{R}^{4}. Find a homogeneous system of linear equations which set of solutions is equal to W.

Problem 3.

Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1},-x_{1}+x_{3}, 3 x_{1}+3 x_{2}+2 x_{3},\right)
$$

a) find the eigenvalues of φ and bases of the corresponding eigenspaces,
b) find a matrix $C \in M(3 \times 3 ; \mathbb{R})$ such that

$$
C^{-1} M(\varphi)_{s t}^{s t} C=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{array}\right]
$$

for some $a \in \mathbb{R}$.

Problem 4.

Let $\mathcal{A}=((1,1),(1,2)), \mathcal{B}=((1,0),(1,-1))$ be ordered bases of \mathbb{R}^{2}. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformations given by the matrix

$$
M(\varphi)_{\mathcal{B}}^{\mathcal{A}}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

a) find the formula of φ,
b) find the matrix $M(\varphi \circ \varphi)_{\mathcal{B}}^{\mathcal{B}}$.

Problem 5.

Let

$$
A_{t}=\left[\begin{array}{cccc}
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 3 \\
t & 1 & 3 & 2 \\
3 & 2 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & 3 & 1 & 4 \\
4 & 1 & 0 & 0 \\
1 & 4 & 0 & 0 \\
1 & 2 & 1 & 1
\end{array}\right]
$$

a) for which $t \in \mathbb{R}$ is matrix A_{t} invertible?
b) for $t=3$ compute $\operatorname{det}\left(B^{-1} A_{t}\right)$.

Problem 6.

Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid 2 x_{1}+x_{2}-x_{3}=0\right\}$ be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V,
b) compute the orthogonal projection of $w=(4,5,1)$ onto V^{\perp}.

Problem 7.
Let $q_{t}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a quadratic form given by the formula $q_{t}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=$ $-x_{1}^{2}-4 x_{2}^{2}-12 x_{3}^{2}+4 t x_{2} x_{3}$.
a) for which $t \in \mathbb{R}$ is the form q_{t} negative definite?
b) check if q_{t} is either positive semidefinite or negative semidefinite for $t=\sqrt{3}$.

Problem 8.

Consider the following linear programming problem $-5 x_{1}-x_{3}-6 x_{5} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{2}+5 x_{5}=3 \\
x_{1}+x_{2}+ \\
+
\end{array}+x_{4}-x_{5}=4 \quad \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{2,3\}, \mathcal{B}_{2}=\{3,4\}$ is basic feasible? Write the corresponding feasible solution.
b) solve the linear programming problem using simplex method.

